Acropetal Auxin Transport Inhibition Is Involved in Indeterminate But Not Determinate Nodule Formation
نویسندگان
چکیده
Legumes enter into a symbiotic relationship with nitrogen-fixing rhizobia, leading to nodule development. Two main types of nodules have been widely studied, indeterminate and determinate, which differ in the location of the first cell division in the root cortex, and persistency of the nodule meristem. Here, we compared the control of auxin transport, content, and response during the early stages of indeterminate and determinate nodule development in the model legumes Medicago truncatula and Lotus japonicus, respectively, to investigate whether differences in auxin transport control could explain the differences in the location of cortical cell divisions. While auxin responses were activated in dividing cortical cells during nodulation of both nodule types, auxin (indole-3-acetic acid) content at the nodule initiation site was transiently increased in M. truncatula, but transiently reduced in L. japonicus. Root acropetal auxin transport was reduced in M. truncatula at the very start of nodule initiation, in contrast to a prolonged increase in acropetal auxin transport in L. japonicus. The auxin transport inhibitors 2,3,5-triiodobenzoic acid and 1-N-naphthylphthalamic acid (NPA) only induced pseudonodules in legume species forming indeterminate nodules, but failed to elicit such structures in a range of species forming determinate nodules. The development of these pseudonodules in M. truncatula exhibited increased auxin responses in a small primordium formed from the pericycle, endodermis, and inner cortex, similar to rhizobia-induced nodule primordia. In contrast, a diffuse cortical auxin response and no associated cortical cell divisions were found in L. japonicus. Collectively, we hypothesize that a step of acropetal auxin transport inhibition is unique to the process of indeterminate nodule development, leading to auxin responses in pericycle, endodermis, and inner cortex cells, while increased auxin responses in outer cortex cells likely require a different mechanism during the formation of determinate nodules.
منابع مشابه
Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean.
Symbiotic root nodules in leguminous plants result from interaction between the plant and nitrogen-fixing rhizobia bacteria. There are two major types of legume nodules, determinate and indeterminate. Determinate nodules do not have a persistent meristem, while indeterminate nodules have a persistent meristem. Auxin is thought to play a role in the development of both these types of nodules. Ho...
متن کاملInvolvement of auxin distribution in root nodule
S (PH D THESIS) Involvement of auxin distribution in root nodule development of Lotus japonicus (Graduate School of Agriculture, Laboratory of Plant Gene Expression, RISH, Kyoto University) Kojiro TAKANASHI Legumes (Fabaceae) constitute the third largest plant family with around 700 genera and 20,000 species. Legume plants form root nodules through symbiosis with a soil microbe called rhizobia....
متن کاملInvolvement of auxin distribution in root nodule development of Lotus japonicus (Graduate School of Agriculture, Laboratory of Plant Gene Expression, RISH, Kyoto University)
S (PH D THESIS) Involvement of auxin distribution in root nodule development of Lotus japonicus (Graduate School of Agriculture, Laboratory of Plant Gene Expression, RISH, Kyoto University) Kojiro TAKANASHI Legumes (Fabaceae) constitute the third largest plant family with around 700 genera and 20,000 species. Legume plants form root nodules through symbiosis with a soil microbe called rhizobia....
متن کاملInvolvement of auxin distribution in root nodule developmentof
S (PH D THESIS) Involvement of auxin distribution in root nodule development of Lotus japonicus (Graduate School of Agriculture, Laboratory of Plant Gene Expression, RISH, Kyoto University) Kojiro TAKANASHI Legumes (Fabaceae) constitute the third largest plant family with around 700 genera and 20,000 species. Legume plants form root nodules through symbiosis with a soil microbe called rhizobia....
متن کاملmiR393 and miR164 influence indeterminate but not determinate nodule development
The roles of auxin in the regulation of symbiotic legume nodule formation are unclear. We recently showed that enhanced sensitivity to auxin resulting from overexpression of miR160 inhibits determinate nodule formation in soybean. We examined the roles of miR393 and miR164 in soybean (that forms determinate nodules) and Medicago truncatula (that forms indeterminate nodules). Our results togethe...
متن کامل